Tribon 의장 데이터의 STEP AP227 파일로 변환

김익준*, 리경호, 한순홍
2010/02/25
Outline

- Introduction & Motivation
- Problem Definition
- A Proposed Approach
- Implementation & Result
- Conclusion & Future Work
Introduction & Motivation
Heterogeneous CAD Systems in Shipbuilding

- Tribon
- CATIA
- SM3D
- AutoCAD
STEP Standards for Shipbuilding

System Engineering : AP233
Product Configuration : AP203
Mechanical and Assembly Design : AP203/AP214
Structural Analysis : AP209
Cable Harness Design : AP212
Ship Arrangement : AP215
Ship Moulded Forms : AP216
Ship Structures : AP218
Furniture : AP236
Process Plant : AP227 Ed.2
PLCS : AP239

ISO 13584 PLIB, AP238: STEP-NC

System Product Definition Analysis/Simulation Results and Delivery
AP227 Plant Spatial Configuration Ed.2

- Connectivity
 - assembly
 - penetrations
 - ports

- 2-D and 3-D Shape Representation
 - Diagrammatic Presentation
 - Solid Model Presentation
 - Interference Analysis

- Configuration Management of Product Structure
- Versioning and Change Tracking
- Bill of Materials
Problem Definition
Characteristics of Shipbuilding CAD System

- Huge size model data

- Modeling based on reference library
CAD Data Archiving

- Currently, we preserve CAD data...

Hardware + OS + CAD System + CAD data must be preserved collectively
(from www.mosla.org)
Goal

Improve Design Efficiency

- Long Term Data Archiving
 - Retain Knowledge
 - Reusability
 - Data Migration

- Tribon – PDMS Data Exchange
 - Interface based on IS
 - Tribon Hull Data Processing
Comparison Table - Related research

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Shipbuilding</td>
<td>Shipbuilding</td>
<td>Shipbuilding</td>
</tr>
<tr>
<td>Scope</td>
<td>Marine Equipment</td>
<td>Ship Structure</td>
<td>3D Geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ship Arrangement</td>
<td>Product Structure Etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ship Moulded Forms Etc.</td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Data Exchange</td>
<td>Data Exchange</td>
<td>Data Exchange</td>
</tr>
<tr>
<td>Technology/Tool</td>
<td>STEP, MACRO, PLIB, XML</td>
<td>STEP, PLIB, XML</td>
<td>STEP, ISO15926, OAIS</td>
</tr>
</tbody>
</table>
A Proposed Approach
DSME Scenario

Interface based on International Standard

Repository

Data upload

Viewer

Next Generation CAD

Tribon ↔ PDS

Tribon ↔ PDMS

Tribon ↔ AutoCAD 3D
Product Data Relationship
Tribon Data Relationship

Diagram:
- Part
 - SpecName
 - CompName
- Spec
 - CompName
- Component
 - VolumeName
- Volume
Tribon XML Data Example
External Reference Relationship in AP 227
Architecture of Tribon -> AP227 Translator

Tribon XML Data → Parser → Parsed Data → AP227 Class → Stp Writer → STEP File

AP 227 schema
Implementation & Result
Implementation Environment

- Implementation Environment
 - Tribon M3
 - Visual Studio 6.0
 - ST-developer ver.10

- Test Case
 - Real model of DSME
 - Partial piping system of H6044
Tribon to Neutral Format

AP227 ➔ Spec ➔ ISO15926 ➔ Shape DB

XML File

Reference relationship

Data Extraction

Tribon Browser

DSME-X3D Browser
Conclusion & Future Work
Conclusion & Future Work

- **Conclusion**
 - Apply international standard to real problem of shipyard.
 - Reusability of the product data model.

- **Remaining Works**
 - Extend data range.
 - Applied in other application client.